


ANDROID FILE SYSTEM
Peter Larsson-Green

Jönköping University

Spring 2021



THE FILE SYSTEM

• Consists of files and folders.



INTERNAL STORAGE

Where all apps are installed. 

• Each app has its own folder on internal storage.
• An app can't access other apps' app folder.

• Each app has its own cache folder on internal storage.
• The OS can delete these files if low on memory.

• (apps can be installed on external storage from API level 8)

• https://developer.android.com/guide/topics/data/install-location.html

• Typically used by large games.

• If external storage not available, app can't run.

val folder: File = aContext.filesDir

val folder: File = aContext.cacheDir

https://developer.android.com/guide/topics/data/install-location.html


EXTERNAL STORAGE

Where apps can share files.
• Is not always available.

• For example, if it's on a removable SD card.

• Each app has its own folder on external storage.

• Each app has its own cache folder on external storage.

• Each type of media has its own folder on external storage.

val folder: File = aContext.getExternalFilesDir(null)

val folder: File = aContext.getExternalFilesDir(

Environment.DIRECTORY_MUSIC

)

val folder: File = aContext.externalCacheDir

val folder: File = Environment.getExternalStoragePublicDirectory(

Environment.DIRECTORY_DCIM

)



PERMISSIONS

• Internal Storage:
• Each app has permission to access its own folder.

• An app can't access another app's folder.

• External Storage:

API level READ_EXTERNAL_STORAGE WRITE_EXTERNAL_STORAGE

1 Didn't exist Didn't exist

4 Required for all external storage

16 Introduced

19 Enforced. Not required for own 
app folder

Not required for own app folder

29 Scoped storage introduced = Can't read/write to other app folders

30 Scoped storage enforced

val folder: File = Environment.getExternalStoragePublicDirectory(

Environment.DIRECTORY_DCIM

)



WRITE TO A FILE

val folder = aContext.filesDir

val file = File(folder, "my-file.txt")

file.writeText("The content.")



READ FROM A FILE

val folder = aContext.filesDir

val file = File(folder, "my-file.txt")

val content = file.readText()



STORING USER FILES

• Use the Media Store.
• For media files (images, videos, audio, …)

• Introduced in API level 1

• Use the Storage Access Framework.
• For other type of files

• Introduced in API level 19



MEDIA STORE

Provides a Content Provider with access to the files.

• Contract: https://developer.android.com/reference/kotlin/android/provider/MediaStore

• For Android <= 9:
• READ_EXTERNAL_STORAGE for reading any file.

• WRITE_EXTERNAL_STORAGE for writing any file.

• For Android >= 10:
• READ_EXTERNAL_STORAGE for reading files added by other apps.

https://developer.android.com/reference/kotlin/android/provider/MediaStore


STORAGE ACCESS FRAMEWORK

Your app needs no general read/write permission,
the user selects file for us.

1. Ask the user to pick the place through the storage access framework.

2. Obtain a Content Provider URI with permission.



SECONDARY EXTERNAL STORAGE

API level 19 started support for secondary external storage.

• E.g., the device's main storage memory contains both internal and 
external storage, and then supports SD card too.
• https://developer.android.com/about/versions/android-4.4#ExternalStorage

val folders: Array<File> = aContext.externalFilesDirs

val folders: Array<File> = aContext.externalCacheDirs

https://developer.android.com/about/versions/android-4.4#ExternalStorage


SHARED PREFERENCES

SharedPreferences preferences = getPreferences(MODE_PRIVATE);

Key/value pairs of String/primitive data types stored in files.

• Inside an activity (Activity specific):

• Inside an activity (Activity independent):

SharedPreferences preferences = getSharedPreferences(

"the-name",

MODE_PRIVATE

);

Older versions of 
Android supported 

different modes.



SHARED PREFERENCES

SharedPreferences.Editor editor = preferences.edit();

editor.putInt("luckyNumber", 7);

editor.putString("name", "Hello");

editor.apply(); // Save changes asynchronously or...

editor.commit(); // ...save changes synchronously.

int luckyNumber = preferences.getInt("luckyNumber", -1);

String name = preferences.getString("name", "???");

Write:

Read:

Default 
value.

Default 
value.


