JONKOPING UNIVERSITY
School of Engineering



ANDROID SERVICES

Peter Larsson-Green
Jonkoping University
Spring 2020




Broadcast
Receivers

Content
Providers




SERVICES VS THREADS

» Threads in activities should not outlive activities.
« Android sees components running, not threads.

« If the process is killed, the service can be restarted.
» Services run on the main application thread.

JONKOPING UNIVERSITY
‘ School of Engineering



CREATING SERVICES

public class MyService extends Service({

// Override methods to implement your specific behavior.

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
ackage="the.package">
b J b J android:label
<application ...> android:description

<service android:name="the.package.TheClass" />

</application>

</manifest>

ONKOPING UNITVERSITY
School of Engineering




SERVICES

Services can be used in two different ways:

= AS da command executor:
1. Send a command to the service.
2. The service executes the command.

 As a bound service:
1. Send command to the service through an interface you define.
2. The service can send back results to the client.

' JONKOPING UNIVERSITY
‘ ol of Engine



SEIQVI(:ESI LIFE CYCLE (COI\/IMAND EXECUTOR)

Is service

already onStartCommand()
running?

onCreate()

onDestroy()




CREATING SERVICES i for each cal

service to run.

public class MyService extends Service({

@Override

public int onStartCommand (Intent i1ntent, int flags,
[ J

(]
int startId) {
// Do your work! ¢
return Service.START_REDELIVER_INTENT; O

0
START FLAG REDELIVERY

START REDELIVER INTENT
- — START FLAG RETRY

START STICKY
START NOT STICKY

JONKOPING UNIVERSITY
. School of Engineering



USING A SERVICE

Starting a service:

Intent intent = new Intent (aContext, TheService.class);

aContext.startService (intent) ;

Stopping a service:

theService.stopSelf () ;

theService.stopSelfResult (theldPassedToOnStartCommand) ;

aContext.stopService (intentSentToStartService) ;

JONKOPING UNIVERSITY
‘ School of Engineering



INTENTSERVICE

A service with a worker thread.

public class MyIntentService extends IntentService(
public MyIntentService () {
super ("NameOfThread") ;
}
@Override
protected void onHandleIntent (Intent intent) {
// Called by the worker thread.

" JONKOPING UNIVERSITY



RUNNING IN THE FOREGROUND

* Why?

 To tell Android that the user is using you application.

* Consequences:
 Your application is less likely killed.
 Your application shows an icon in the notification bar.

>
* How: theService.startForeground (

theNotificationId,

theNotification

) S

theService.stopForeground (bool removeNotification); S

Engineerin g




SERVICES' LIFE CYCLE (sounp service)

Is service
already
running?

First
bind?

onCreate()

onBind()

onUnbind()

onDestroy()



CREATING BOUND SERVICES

Act as servers (other components are clients).

public class MyBoundService extends Service(

@QOverride
public IBinder onBind(Intent intent) {
// Return an IBinder to the client.

}




CREATING BOUND SERVICES

public class MyBoundService extends Service(
public class MyBinder extends Binder/{
public String getData () {
return "This 1s the datal";
}
}

@QOverride

public IBinder onBind (Intent intent) {

return new MyBinder () ;

}




USING BOUND SERVICES

public class MyActivity extends Activity{
protected MyBinder myBinder;
protected ServiceConnection connection = new ServiceConnection () {
public void onServiceConnected (ComponentName name, IBinder service) {
myBinder = (MyBinder) service;
}
public void onServiceDisconnected (ComponentName name) {

myBinder = null;

JONKOPING UNIVERSITY
‘ School of Engineering



USING BOUND SERVICES

public class MyActivity extends Activity{
//

protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
Intent intent = new Intent (this, MyBoundService.class);
bindService (1ntent, connection, Context.BIND AUTO CREATE);

BIND AUTO CREATE
BIND ABOVE CLIENT
BIND NOT FOREGROUND

JONKOPING UNIVERSITY
‘ School of Engineering



USING BOUND SERVICES

public class MyActivity extends Activity{
VAR

protected void onDestroy () {

super.onbDestroy () ;

unbindService (connection) ;




SERVICES' LIFE CYCLE

onStartCommand()

onDestro
onCreate() onBind() onUnbind() Y0

onRebind()




