
● Frontend frameworks

● Basics of real-time network programming

 by William Sjökvist
williamsjokvist.se

Topics: Websockets, webRTC, custom encoded
payloads

Topics: traditional vs. modern websites, Why to use a
framework and the differences between them, building
desktop / mobile apps

Agenda

Why use a frontend
framework over vanilla JS?

● Abstracted DOM manipulation

● Unified API - thank jQuery

● Tooling which add support for bundling,
minifying, linting, hot-reload, TypeScript } Awesome

Developer
Experience
(DX)

A Distinction: traditional vs
modern web app

● Traditional website

Primarily to serve content, usually delivered through a Content
Management System (CMS) backend, not interactable-first
design, good Search Engine Optimization (SEO).

Examples: blogs, portfolios, documentation sites, product
pages, wikis, forums

A Distinction: traditional vs
modern web app

● Modern web app

Designed to be interactable, strictly single-page, usually more
complex than only serving content

Examples: telecommunication software, software tools,
streaming services, eCommerce platforms, social media

Figma, Google Apps, Instagram, Slack, VSCode, Netflix, Amazon

https://www.geeksforgeeks.org/difference-between-web-application-and-website/

Choosing a Frontend Framework - what
type of site/app are you making?

● Research the modern frameworks and try multiple

● Pick an appropriate framework for the project

● React-like - React, Preact, Solid

● Not React-like - Svelte, Angular, Vue, Astro

● I’m not a script kid - Blazor (C#), yew (Rust), Hugo (Go) etc.

Some key differences: React

● More a library than a fully-featured framework

● Widely used, easiest framework to get a job for

● Big community support

● Not the easiest to learn due to confusing API (e.g. useEffect)

● Uses a “virtual DOM” for partial re-rendering

● Poor documentation (the new beta docs are good)

Some key differences: Angular

● Not to be confused with AngularJS

● Enforces an MVC architecture and built-in dependency injection

● TypeScript only

● Good for enterprise solutions

● Steep learning curve

● Good documentation

● Relatively poor community support

● Easy to migrate to new versions, never breaking changes

Some key differences: Vue

● Made in 2014 by Evan You, with the goal of combining the best
of both worlds in React and Angular

● Not much widespread enterprise support, although it is
financially supported by Alibaba

● Easy to learn

● Clean components

Some frontend terminology

● SPA - Only one page, client-side rendering, partial re-rendering
● MPA - Rerenders the whole document and all its assets from

the server when clicking a link
● SSR - The server renders the HTML document
● SSG - Generate static HTML documents to serve
● PWA - Add native capabilities to your web app, like push

notifications, offline support

“Meta” JS frameworks - cuz they’re the meta

● Capability to use and combine SSR, SSG, MPA, SPA

● Simplifies development process

● Ability to make backend API endpoints - good for small projects
which are not part of a broader system

React => Next, Remix, Gatsby Angular => Analog
Vue => Nuxt Svelte => SvelteKit

Live example

● API endpoints

● Scaffolding Angular app (my first time)

● Performance difference Astro vs. Next

Using web languages to build desktop
apps for Mac, Windows and Linux

Electron - Serve an app by bundling Chromium and Node into the executable.
Compatible with any backend and frontend frameworks. JS frontend and Node
backend.
Tauri
JS frontend, Rust backend - uses system WebView
Wails
JS frontend, Go backend - uses system Chromium
Chromium Embedded Framework
Supports C++, .NET, Python, Go, Java, Delphi

Apps built with Electron

VSCode, Slack, Discord, Figma, GitHub Desktop, Skype, Signal, Trello,
WhatsApp, Twitch, Notion, Microsoft Teams, Mullvad, 1Password

Spotify and Steam are built with Chromium Embedded Framework

https://en.wikipedia.org/wiki/List_of_software_using_Electron
https://www.electronjs.org/apps/

https://en.wikipedia.org/wiki/List_of_software_using_Electron
https://www.electronjs.org/apps/

Native alternatives, build for
Mobile too

● .NET MAUI - Build multi-platform native apps with Blazor (C#)

● Flutter - Build multi-platform native apps with Dart :(

● React Native - Build multi-platform native apps with React

WebAssembly

● A low-level language that can be executed in the browser

● Is a compilation target for C# (Blazor Wasm, Unity),
Rust (yew), C++ (Emscripten), Java etc.

● Designed to run alongside JavaScript, does not have direct access
to the DOM

● Example: Unity Game Engine in the browser

Topic switch!

Real-time communication

WebSocket protocol

● Utilize the TCP protocol in the browser for real-time duplex
communication in between client and server

● Ensures guaranteed delivery (no packet loss)
● Blocking, will wait for late packets to ensure in-order delivery
● Abstracts away low level networking
● Transmit payloads in e.g. JSON, XML or Binary
● Established by sending a GET request with an Upgrade header,

called a handshake

WebRTC protocol

● Utilize the UDP protocol in the browser
● Not guaranteed delivery
● Does not follow order
● Peer-to-peer

Useful for fast non-critical data

https://webrtc.dom.se

Custom Encodings

● When JSON payloads are getting too large, and will use too much
bandwidth.

● Example of a payload using byte array vs. JSON

Payload UTF-8 string: “{
“Player”: 1,
“Move”: {

“X”: 5,
“Y”: 12

}
}”

Uint8Array: [1, 5, 12]

3 bytes

42 bytes

Pseudo code raw TCP socket
func sendPlayerMovement() {

// Player, Move X, Move Y
var playerMovement = []byte{1, 5, 12}
var bytesSent, err = TCPConnection.Write(playerMovement)

}

func sendMessage() {
// length uint16, Player ID
var payload = []byte{0, 0, 1}
var text = “Hello from player one”

binary.BigEndian.PutUint16(payload[0:2], Uint16Array(len(text))
payload= append(payload, []byte(msg))
bytesSent, err = TCPConnection.Write(payload)

}

Pseudo code raw TCP socket
func readPlayerMovement() {

data := make([]byte, 3)
bytesRead, err := TCPConnection.Read(data)

playerId := data[0]
moveX :=data[1]
moveY := data[2]

log.Println(playerId, moveX, moveY)

}

Pseudo code raw TCP socket
func readMessage() {

// First read the prefix (if there is one, this case 3 bytes), uint16 length and player id
prefix := make([]byte, 3)
bytesRead, err := TCPConnection.Read(prefix)

// Create a buffer specifically for this message
length := binary.BigEndian.Uint16(prefix[0:2])
msg := make([]byte, length)

// Read the message
bytesRead, err := TCPConnection.Read(msg)

// Log Player ID and text message
log.Println(prefix[2], string(msg))

}

Custom Encodings

● JSON for human-readable REST APIs when the client should not have to
make their own parser

● Custom encodings when performance is critical, e.g. intra-service
communication

● Protobuf by Google is a great library for serializing data into an efficient
binary format - gRPC uses this for sending messages between services

Live game example

Video recommendations

Is JSON blazingly fast..?
- ThePrimeagen

 I built 10 web
apps... with 10
different
languages

- Fireship
What is gRPC?

- IBM Technology
 WebSockets in 100
Seconds & Beyond
with Socket.io

- Fireship

http://www.youtube.com/watch?v=MuCK81q1edU
http://www.youtube.com/watch?v=hVrwuMnCtok
http://www.youtube.com/watch?v=FQPlEnKav48
http://www.youtube.com/watch?v=1BfCnjr_Vjg

