¢</> Agenda

e Frontend frameworks

Topics: traditional vs. modern websites, Why to use a
framework and the differences between them, building
desktop / mobile apps

e Basics of real-time network programming

Topics: Websockets, webRTC, custom encoded
payloads

by William Sjokvist
williamsjokvist.se

</> Why use a frontend

framework over vanilla JS?

Abstracted DOM manipulation
Unified API - thank jQuery

Tooling which add support for bundling,
minifying, linting, hot-reload, TypeScript

Awesome
Developer

Experience
(DX)

</> A Distinction: traditional vs
modern web app

e Traditional website

Primarily to serve content, usually delivered through a Content
Management System (CMS) backend, not interactable-first
design, good Search Engine Optimization (SEO).

Examples: blogs, portfolios, documentation sites, product
pages, wikis, forums

</> A Distinction: traditional vs
modern web app

e Modern web app

Designed to be interactable, strictly single-page, usually more
complex than only serving content

Examples: telecommunication software, software tools,
streaming services, eCommerce platforms, social media

Figma, Google Apps, Instagram, Slack, VSCode, Netflix, Amazon

https://www.geeksforgeeks.org/difference-between-web-application-and-website/

¢/> Choosing aFrontend Framework - what
type of site/app are you making?

e Research the modern frameworks and try multiple

e Pick an appropriate framework for the project

e React-like - React, Preact, Solid

e Not React-like - Svelte, Angular, Vue, Astro

e I'm not a script kid - Blazor (C#), yew (Rust), Hugo (Go) etc.

¢/> Some key differences: React

e More a library than a fully-featured framework

e Widely used, easiest framework to get a job For

e Big community support

e Not the easiest to learn due to confusing API (e.g. useEffect)
e Uses a “virtual DOM" for partial re-rendering

e Poor documentation (the new beta docs are good)

¢/> Some key differences: Angular

e Not to be confused with AngularJS

e Enforces an MVC architecture and built-in dependency injection
e TypeScript only

e Good for enterprise solutions

e Steep learning curve

e Good documentation

e Relatively poor community support

e Easy to migrate to new versions, never breaking changes

¢</> Some key differences: Vue

e Madein 2014 by Evan You, with the goal of combining the best
of both worlds in React and Angular

e Not much widespread enterprise support, although it is
fFinancially supported by Alibaba

e Easyto learn

e Clean components

¢</> Some frontend terminology

e SPA-Only one page, client-side rendering, partial re-rendering

e MPA - Rerenders the whole document and all its assets from
the server when clicking a link

e SSR-The server renders the HTML document

e SSG - Generate static HTML documents to serve

e PWA - Add native capabilities to your web app, like push
notifications, offline support

(/) "M e ta" J S fl'a m EWO I'kS - cuz they're the meta

e Capability to use and combine SSR, SSG, MPA, SPA
e Simplifies development process

e Ability to make backend API endpoints - good for small projects
which are not part of a broader system

= React => Next, Remix, Gatsby Angular => Analog

ﬂ Vue => Nuxt Svelte => SvelteKit

¢</> Live example

e API endpoints
e Scaffolding Angular app (my first time)

e Performance difference Astro vs. Next

¢/> Using web languages to build desktop
apps for Mac, Windows and Linux

Electron - Serve an app by bundling Chromium and Node into the executable.
Compatible with any backend and frontend frameworks. JS frontend and Node

backend.

Tauri

JS frontend, Rust backend - uses system WebView
Wails

JS frontend, Go backend - uses system Chromium
Chromium Embedded Framework

Supports C++, .NET, Python, Go, Java, Delphi

¢</> Apps built with Electron

VSCode, Slack, Discord, Figma, GitHub Desktop, Skype, Signal, Trello,
WhatsApp, Twitch, Notion, Microsoft Teams, Mullvad, 1Password

Spotify and Steam are built with Chromium Embedded Framework

=

https://en.wikipedia.org/wiki/List of software using Electron
https://www.electronjs.org/apps

https://en.wikipedia.org/wiki/List_of_software_using_Electron
https://www.electronjs.org/apps/

</> Native alternatives, build for
Mobile too

e .NET MAUI - Build multi-platform native apps with Blazor (C#)
e Flutter - Build multi-platform native apps with Dart :(

e React Native - Build multi-platform native apps with React

</> WebAssembly

e A low-level language that can be executed in the browser

e Isa compilation target for C# (Blazor Wasm, Unity),
Rust (yew), C++ (Emscripten), Java etc.

e Designed to run alongside JavaScript, does not have direct access
to the DOM

e Example: Unity Game Engine in the browser

¢</> Topic switch!

Real-time communication

¢</> WebSocket protocol i

e Utilize the TCP protocol in the browser for real-time duplex
communication in between client and server

Ensures guaranteed delivery (no packet loss)

Blocking, will wait For late packets to ensure in-order delivery
Abstracts away low level networking

Transmit payloads in e.g. JSON, XML or Binary

Established by sending a GET request with an Upgrade header,
called a handshake

</> WeDbRTC protocol '

Utilize the UDP protocol in the browser
Not guaranteed delivery

Does not follow order

Peer-to-peer

Useful For fFast non-critical data

https://webrtc.dom.se

fps: 118 wvar: 1.1 ms ping: O¥ms
loss: 0% choke: 0% =
tick: 64.0 sv: 6.8 +- 1.2 ms var:

¢</> Custom Encodings

e When JSON payloads are getting too large, and will use too much
bandwidth.
e Example of a payload using byte array vs. JSON

Payload UTF-8 string: “{ Uint8Array: [1, 5, 12]
“Player”: 1,
"Move': { 3 bytes
“Y": 12

}
! 42 bytes

</> Pseudo code raw TCP socket

func sendPlayerMovement() {
// Player, Move X, Move Y
var playerMovement = [Ibyte{l, 5, 12}
var bytesSent, err = TCPConnection.Write(playerMovement)

}

func sendMessage() {
// length uintl6, Player ID
var payload = [Ibyte{0, 0, 1}
var text = "Hello from player one”

binary.BigEndian.PutUint16(payload[0:2], Uint16Array(len(text))
payload= append(payload, [Ibyte(msg))
bytesSent, err = TCPConnection.Write(payload)

</> Pseudo code raw TCP socket

func readPlayerMovement() {
data := make([Ibyte, 3)
bytesRead, err := TCPConnection.Read(data)

playerId := datal0]
moveX :=datall]

moveY := datal2]

log.Println(playerId, moveX, moveY)

</> Pseudo code raw TCP socket

func readMessage() {
// First read the prefix (if there is one, this case 3 bytes), uint16 length and player id
prefix := make([Ibyte, 3)
bytesRead, err := TCPConnection.Read(prefix)

// Create a buffer specifically for this message
length := binary.BigEndian.Uint16(prefix[0:2])
msg := make([Ibyte, length)

// Read the message
bytesRead, err := TCPConnection.Read(msg)

// Log Player ID and text message
log.Println(prefix[2], string(msg))

¢</> Custom Encodings

e JSON for human-readable REST APIs when the client should not have to
make their own parser

e Custom encodings when performance is critical, e.g. intra-service
communication

e Protobuf by Google is a great library For serializing data into an efficient
binary format - gRPC uses this for sending messages between services

¢</> Live game example

¢</> Video recommendations

10 &~ @ I built 10 web

Is JSON blazingly fast..?
s o @ € apps... with 10 gly f

- ThePrimeagen
APPS ® © ® different)
languages
- Fireship
. gRPC: scalable, -~ -
What is gRPC? fast communication f@
100 . - IBM Tech nology for microservices '\
R)5 WebSockets in 100 e

RV wEB f@‘ Seconds & Beyond .

Eﬂ%ﬂ ’ ,3» with Socket.io

i ™

- Fireship

http://www.youtube.com/watch?v=MuCK81q1edU
http://www.youtube.com/watch?v=hVrwuMnCtok
http://www.youtube.com/watch?v=FQPlEnKav48
http://www.youtube.com/watch?v=1BfCnjr_Vjg

