

JÖNKÖPING UNIVERSITY

School of Engineering

INTRODUCTION TO COMPUTERS AND PROGRAMMING

Peter Larsson-Green

Jönköping University

Autumn 2018

WHAT IS A COMPUTER?

Something that computes something.

E.g. an orrery:

https://www.youtube.com/watch?v=yKS7CodC-bU

https://en.wikipedia.org/wiki/Orrery

WHAT IS A COMPUTER?

Something that computes something.

E.g. the enigma machine:

https://www.youtube.com/watch?v=ASfAPOiq_eQ&feature=youtu.be&t=129

https://en.wikipedia.org/wiki/Enigma_machine

AN ABSTRACT VIEW OF A COMPUTER

AN ABSTRACT VIEW OF A COMPUTER

Does this view fit modern computers?

MODERN COMPUTERS

Modern computers are *general-purpose computers*.

• The hardware in the computer can be used to compute things.

• The software (the program) tells the hardware what to compute.

HARDWARE V SOFTWARE

- A program (the software) consists of a sequence of instructions.
- The hardware executes these instructions, one after another.

Many modern computers support a set of instructions called X86.
See all of the instructions at https://en.wikipedia.org/wiki/X86 instruction listings.

SAMPLE PROGRAM

Checking if the sum of the integers between 0 and 2 is 3. Instructions Python

⇒0:	SET	Ο,	#9
⇒1:	ADD	1,	#9
⇒2:	ADD	2,	#9
⇒3:	SUB	З,	#9
➡4:	JINZ	#9 ,	#7
⇒5:	SET	4,	#10
➡6:	JUMP	#8	
7:	SET	5,	#10
⇒8:	FINIS	SΗ	
9:	θ 1 3	0	
10:	4		

Hard to read & hard to write. ↓ Programming languages invented. sum = 0
sum += 1
sum += 2
if sum == 3:
 answer = "Yes"
else:
 answer = "No"

PROGRAMMING IN THE FUTURE?

Visual programming?

PROGRAMMING IN THE FUTURE?

Just tell it what to do?

PROGRAMMING PARADIGMS

A programming paradigm is a special way to express how a program should work.

- With C we primarily do *imperative programming*.
 - The program consists of statements to be executed.
 - Maps very well to how computers works internally.

int	sum =	0;
sum	+= 1;	
sum	+= 2;	
sum	+= 3;	

PROGRAMMING PARADIGMS

A programming paradigm is a special way to express how a program should work.

- With C we primarily do *imperative programming*.
 - The program consists of statements to be executed.
 - Maps very well to how computers works internally.
- With Java we primarily do *object-oriented programming*.
 - The program consists of objects that communicates with each other.
 - Maps very well to how the real world works.

```
Car petersCar = new Car("ABC123");
petersCar.increaseSpeed(10);
petersCar.break();
```


PROGRAMMING PARADIGMS

A programming paradigm is a special way to express how a program should work.

- With C we primarily do *imperative programming*.
 - The program consists of statements to be executed.
 - Maps very well to how computers works internally.
- With Java we primarily do *object-oriented programming* ³ * ² * factorial 1
 - The program consists of objects that communicates with each other • More very well to how the real world works
 - Maps very well to how the real world works.
- With Haskell, we primarily do *declarative programming*.
 - The program consists of definitions.
 - Maps very well to recursively defined functions (math...).

factorial 1 = 1factorial n = n * factorial (n - 1)

6

factorial 3

3 * factorial 2

OPERATING SYSTEMS

A computer can only run one program at a time.

Operating Systems invented

Users want to run multiple programs at the same time.

OPERATING SYSTEMS

0

• The OS switches between the programs so fast that users don't notice.

PROGRAMMING IS HARD!

Edsger W. Dijkstra:

Programming is one of the most difficult branches of applied mathematics; the poorer mathematicians had better remain pure mathematicians.

