


KOTLIN ASYNC. OPERATIONS
Peter Larsson-Green

Jönköping University

Spring 2021



THE MAIN THREAD

println("I'm executed by the main thread!")

Executes by default all your code.



A BACKGROUND THREAD

println("I'm executed by the main thread!")

thread {

println("I'm executed by a background thread!")

}

println("I'm executed by the main thread!")

Can be created and started using the thread() function.

Usually, you want to use coroutines instead.



COROUTINES

A more abstract view of asynchronous programming.

• Threads are used under the hood, but we don't worry about them.

What is a coroutine?

• A piece of code that should be executed, potentially concurrently 
with other code.
• Think of it as a function.



COROUTINES

Coroutine
Coroutine

Scope

Dispatcher

Contains the code 
that should be 

executed by a thread.

Is a collection of 
threads that can 

execute coroutines.
Job

Controls the 
execution of a 

Coroutine.

Has one

Creates new 
Coroutines and can 
stop them when the 

scope dies.

Has many



DISPATCHERS

• A collection of threads that can execute coroutines.

• There are pre-defined dispatchers we can use, e.g.:
• Dispatchers.Default

Use this one if no more specific dispatcher is suitable.

• Dispatchers.IO
Use this one for Input/Output operations (files, network, etc.).

• Dispatchers.Main
Use this one for code you want to be executed by the main thread.

• You can also create your own dispatchers.



COROUTINE SCOPES

• Starts/stops Jobs automatically.

• There are pre-defined Coroutine Scopes we can use, e.g.:
• GlobalScope

Stops when the application stops.

• Frameworks can provide their own Coroutine Scopes, e.g.:
• ViewModelScope in Android

Stops when the activity/fragment is destroyed (not re-created).

• You can also create your own Coroutine Scopes.



CREATING COROUTINES

Coroutines can be created using the launch() method on a 
Coroutine Scope.

println("I'm executed by the main thread!")

val job = GlobalScope.launch(Dispatchers.Default){

println("I'm executed by a background thread!")

// Put long running operations here!

}

println("I'm executed by the main thread!")



CHANGING DISPATCHER

Use the withContext() function to change dispatcher.

println("I'm executed by the main thread!")

val job = GlobalScope.launch(Dispatchers.Default){

val result = longRunningOperations()

withContext(Dispatchers.Main){

println("I'm executed by the main thread!")

// Update the GUI.

}

}

println("I'm executed by the main thread!")



SUSPENDING VS WAITING

The thread executing a coroutine can swap between coroutines it 
should execute when calling a suspend function. 

GlobalScope.launch(Dispatchers.Main){

delay(1000L) // Built in suspend function.

println("2")

}

GlobalScope.launch(Dispatchers.Main){

println("1")

}

println("0")

GlobalScope.launch(Dispatchers.Main){

Thread.sleep(1000L)

println("1")

}

GlobalScope.launch(Dispatchers.Main)){

println("2")

}

println("0")



SUSPENDING FUNCTIONS

Suspend functions can only be used in coroutines and other suspend 
functions.
suspend fun waitAndPrint(time: Long, message: String){

delay(time)

println(message)

}

GlobalScope.launch(Dispatchers.Main){

waitAndPrint(1000L, "2")

}

GlobalScope.launch(Dispatchers.Main){

println("1")

}


