

BASICS IN PYTHON, PART 1
Peter Larsson-Green

Jönköping University

Autumn 2018

PETER'S CONVENTION

This box represents an entire program
which consists of a sequence of statements.

This box represents a single statement.

This box represents a single expession.

This box represents Python code written in plain text.

The arrow → represents an evaluation step of some kind, e.g.:

3 + 8 → 11

IMPERATIVE PROGRAMS

Statement 1

Statement 2

Statement 3

Statement 4

ProgramA program consists of:
• A sequence of

statements.

A statement consists of:
• Other statements

and expressions.

Expressions evaluate to:
• Values.

Executed statements:
• Alters the state

of the program.

variable = Expression 1

if :Expression 1

Statement 1

Statement 2

Name Value

x 12

y 36

Variable table.

EXPRESSIONS

• Is something your computer can evaluate.

• It will always evaluate to a value.

• Many programming languages have a tool with an REP-loop.
• Read the entered expression.

• Evaluate it.

• Print the computed value.

INTEGERS

• Used to represent "how many" (something countable).

• An expression consisting of a sequence of digits is evaluated to a
integer.

Examples

37

52

3737

52

→

52→

FLOATS

• Used to represent "how much".

• An expression consisting of a sequence of "digits and
one decimal dot" is evaluated to a float.

Examples

37.5

52.0

37.537.5

52.0

→

52.0→

THE NEGATION EXPRESSION

Syntax:

Examples

In reality, -0 and 0
represents the same
number.

How about in computers?

How it is computed
1. Evaluate <expr>.

2. Negate that value.

- <expr>

- 11

- - 23 - - 23

- 11→

→ →

→ -11

- -23 → 23

-11

--23

BINARY MATHEMATICAL EXPRESSIONS

Syntax:

Examples

What about
division by

zero?

<operator><expr1> <expr2>

+5 3

-4 7

*3 2

/1 4

→ 6

→ 0.25

→ -3

→ 8→

→

→

→

5 + 3

4 - 7

3 * 2

1 / 4

5 + 3

4 - 7

3 * 2

1 / 4

→

→

→

→

How it is computed
1. Evaluate <expr1>.

2. Evaluate <expr2>.

3. Apply <operator> on
the computed values.

5+3

3*2

4-7

1/4

BINARY MATHEMATICAL EXPRESSIONS

Examples

**5 3

//9 2

%9 2 → 1

→ 4

→ 125→

→

→

5 ** 3

9 // 2

9 % 2

→

→

→

5 ** 3

9 // 2

9 % 2

9//2

5**3

9%2

WHAT ABOUT MORE OPERANDS?

Syntax:

• <expr1> and <expr2> can in turn be binary mathematical
expressions!

• Example

<operator><expr1> <expr2>

<op><expr1> <op> <expr2> <expr3>

+1 + 2 3

<op> <expr3><op> <expr1> <expr2>

→ 1 + + 2 3 1 + 2 + 3

1 + 2 + 3

→ →

→ 1 + 5 → 6

1+2+3

WHAT ABOUT MORE OPERANDS?

+1 * 2 3 → 1 + * 2 3 1 + 2 * 3

1 + 2 * 3

→ →

→ 1 + 6 → 7

* 3+ 1 2 → → →

→ → 9

* 31 + 2 * 31 + 2

3 * 33 * 3

Ordinary math operator precedence applies!

1 + 2 * 3

(1 + 2) * 3

EXAMPLE

To calculate the size of the surface of a sphere, the following
formula is used:

𝐴𝑟𝑒𝑎 = 4 ∗ 𝜋 ∗ 𝑟 ∗ 𝑟

𝜋 = 3.14159. . .

The radius of Earth is about 6,371 kilometers.

• How big is the surface of Earth?
• 4*3.14159*6371*6371 kilometer².
• 4*3.14159*6371000*6371000 meter².

• How big would it be if the radius is 500 kilometers shorter?
• 4*3.14159*(6371-500)*(6371-500) kilometer².
• 4*3.14159*(6371000-500000)*(6371000-500000) meter².

STATEMENTS

• Most high level programs consist of a sequence of statements.

• They are executed from top to bottom.

• An executed statement results in side effects. For example...
• Storing a value in a variable.

• Conditionally execute other statements.

• Conditionally repeat execution of other statements.

VARIABLES

How it is executed

1. Evaluate <expr> to a
value.

2. Create a variable named
<variable> and store
the value there.

A variable is a sequence of characters storing a value.

• Statement creating a variable: <variable> = <expr>

Name Value

<variable> The value

Variable table.

<variable> → The value

EXAMPLE

• Calculate how big the surface of Earth is
(4*3.14159*6371*6371).

Benefits

• Code is easier to read.

• Do not duplicate the hard coded radius value.

pi = 3.14159

earthRadius = 6371

earthArea = 4*pi*earthRadius*earthRadius

Name Value

Variable table.

pi

earthRadius

earthArea

3.14159

6371

510064041.08

VARIABLES NAMING CONVENTION

The name of the variable should reflect the value it stores.

• Makes the code easier to read.

• Common naming conventions:
• writeItLikeThis (camelCase, first letter lowercased)

• WriteItLikeThis (camelCase, first letter capitalized)

• write_it_like_this (used in Python!)

x = 5 z = 7.23

numberOfStudents = 5 amountOfWater = 7.23

REASSIGNMENT STATEMENT

Stores a new value in an existing variable.

Syntax:

How it is executed

1. Evaluate <expr>.

2. Store the evaluated expression in the
variable named <variable>.

<variable> = <expr>

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

sum = 0

sum = sum + 1

sum = sum + 2

Name Value

Variable table.

0- 1- 3sum

How many statements?

• 3

How many expressions?

• 7

sum =

sum =

sum =

Program

0

+sum 1

+sum 2

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

Let's be a computer and execute the statements!

sum = 0

sum = sum + 1

sum = sum + 2

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

sum = 0 # I create the variable sum, storing: 0 → 0.

sum = sum + 1

sum = sum + 2

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

sum = 0

sum = sum + 1 # I store a new value in sum: sum+1 → 0+1 → 1.

sum = sum + 2

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

sum = 0

sum = sum + 1

sum = sum + 2 # I store a new value in sum: sum+2 → 1+2 → 3.

EXAMPLE

Purpose: to compute the sum of the integers between 0 and 2.

sum = 0

sum = sum + 1

sum = sum + 2

And I'm done!

STRINGS

Represents a sequence of characters.

• Expressions creating strings:

→ This is a string.

→ This is a string.

• Escaped characters have special meaning:
• \" = "

• \' = '

• \n = newline

"This is a string."

'This is a string.'

"This is\na string." → This is

a string.

STRINGS

• Multiline strings:

• Works with ''' as well.

• The + operator can be used to concatenate strings:
→ This is a string!

"""This is a

string covering

multiple lines."""

→ This is a

string covering

multiple lines.

+"This is " 'a string!'

INPUT OUTPUT

Printing a value to the console:

print("The thing to print!")

print(52)

Reading a string from the console:

input()

The thing to print!

52

Hello!

input("Enter something: ") Enter something: Hello!

entered_text = input()

EXAMPLE

name = input("Enter your name: ")

print("Hello "+name+"!")

Enter your name: Peter

Hello Peter!

age = input("Enter your age: ")

print("Your age doubled is: "+age*2)

Enter your age: 2

Your age doubled is: 22

age = input("Enter your age: ")

age = int(age)

print("Your age doubled is: "+age*2)

Enter your age: 2

Traceback (most recent call

last):

File "<stdin>", line 1, in

<module>

TypeError: Can't convert

'int' object to str

implicitly

EXAMPLE

age = input("Enter your age: ")

age = int(age)

print("Your age doubled is: "+str(age*2))

Enter your age: 2

Your age doubled is: 4

Enter your age: a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int()

with base 10: 'a'

DIFFERENT TYPE OF ERRORS

• Syntax errors
• What you have written is not valid Python code.

• Example:

• Python do not understand what you want → nothing will be executed.

• Runtime errors
• Python discovers the error while executing your code.

• Example:

• Logical errors
• Python runs your entire program, but it does not work as you want.

• Example:

my_variable = 4 + 6 -

my_variable = 4 / 0

average = 4 + 6 / 2

