JONKOPING UNIVERSITY
School of Engineering

DATA STORAGE IN PYTHON

Peter Larsson-Green
Jonkoping University
Autumn 2018

WHERE DO WE STORE DATA?

In variables!
ORI\ A NG (SEIGCHI ny variable = 123
B EVATR (M my variable

- Easy to update.
* Very fast!
» Variables are deleted when program terminates

WHERE DO WE STORE DATA?

In files!
« More complex to create.
* More complex to read.

» More complex to update.
* Slower.

 Continues to exist after the program has terminated
 Until the user manually deletes it by mistake...

HOW TO OPEN FILES

file object = open("the-filename.txt", "w")

The modes The mode.

- "w" - create the file if it does not exist, :
then use file object to write strings to it.

* "a" - create the file if it does not exist, :
then use file object to write strings to it (at the end).

« "r" - open the file for reading,
thenuse file object to read strings from it.

« "r+" - open the file for reading and writing,
then use file object toread and write strings to/from it.

JONKOPING UNIVERSITY
‘ School of Engineering

HOW TO CLOSE FILES

file object = open("the-filename.txt", "w"

Work with the file...

file object.close()

with open ("the-filename.txt", "w") as file object:

Work with the file...

WRITING TO AN OPENED FILE

with open("test-file.txt", "w") as file object:

file object.write("This 1s the content!")

Must be
a string.

with open("test-file.txt", "w") as file object:

file object.write("This 1s the new content!")

test-file.txt

This 1s the new content!

JONKOPING UNIVERSITY
‘ School of Engineering

EXAMPLE

def write numbers to file(name, n):
with open(name, "w") as file object:

for 1 1n range(l, n+1l):

file object.write(str(i)+"\n")

numbers.txt

write numbers to file ("numbers.txt", 5)

JONKOPING UNIVERSITY
ol of Engine

READING FROM AN OPENED FILE

with open("test-file.txt", "r") as file object:

all content = file object.read()

with open("test-file.txt", "r") as file object:

113 1 f11 b T dli () VVﬂil"\n"
ine — 11le O eClt.rea ine
2P at the end.
line2 = file object.readline ()
""" means no
more lines.

with open("test-file.txt", "r") as file object:

list of lines = file object.readlines()

' JONKOPING UNIVERSITY
‘ ol of Engine

EXAMPLE

def get sum of numbers in file (name) :
with open(name, "r") as file object:
sum =
line = file object.readline()
while line != "":
sum += 1nt (line)
line = file object.readline ()

return sum

fifteen = get sum of numbers in file ("numbers.txt")

numbers.txt

" JONKOPING UNIVERSITY

READING FROM AN OPENED FILE

with open("test-file.txt", "r") as file object:

for line in file object:

Do something with line!

def get sum of numbers in file (name) : numbers.txt
with open(name, "r") as file object:

sum = 0

for line in file object:

sum += int (line)

return sum

STORING COMPLEX DATA

How do we store the data below in a file?

It's your program, you decide!

STORING COMPLEX DATA

Example: one human on each line, separate values by space.

humans humans.txt
"Alice"}, 10 Alice

{'age': 10, 'name'
15 Belle
20 Chloe

{'age': 15, 'mame': "Belle"},

{'age': 20, 'name': "Chloe"}

with open ("humans.txt", "w") as file object:

for human 1n humans:

file object.write(str (human['age'])+" "+human['name']+"\n")

' JONKOPINGLNHVERSHY
‘ ol of Engine

PARSING COMPLEX DATA

Example: one human on each line, separate values by space.

humans.txt
10 Alice

humans = []

with open ("humans.txt", "r") as file:
15 Belle

20 Chloe

for line in file:

values = line.split (" ")

humans . append ({
'age': int (values[0]),

'name': values[l].rstrip/()

})

' JONKOPING UNIVERSITY
‘ ol of Engine

STORING COMPLEX DATA

humans = |

{'age': 10, 'name': "Alice", 'city': "Atlanta"},

{'age': 15, 'name': "Belle", 'city': "Buenos Aires"},

{'age': 20, 'mame': "Chloe Clair", 'city': "Cairo"}

humans.txt : 15,

. "Belle",
10 Alice Atlanta "BUuenos Aires"}

15 Belle Buenos Aires

20 Chloe Clair Cairo : 15,
"Belle Buenos",

"Aires"}

JONKOPING UNIVERSITY
School of Engineering

STORING COMPLEX DATA

Well known data formats has evolved.

Advantages:
* "Everybody" already know these formats.

 Others have already written code for generating/parsing them.

JONKOPING UNIVERSITY

CSV: COMMA SEPARATED VALUES

humans.csv
10,Alice,Atlanta

15,Belle, Buenos Aires

20,Chloe Clair,Cairo

CSV IN PYTHON

import csv

humans = |
{'age': 10, 'name': "Alice", 'city': "Atlanta"},
{'age': 15, 'name': "Belle", 'city': "Buenos Aires"},
{'age': 20, 'name': "Chloe Clair", 'city': "Cairo"}

]

with open('humans.csv', 'w', newline="\n") as csv _file:
writer = csv.writer(csv file, delimiter=',', quotechar='"")
for h in humans:

writer.writerow([h['age'], h['name'], h['city']])

JONKOPING UNIVERSITY
‘ School of Engineering

CSV IN PYTHON

import csv
humans = []

with open ('humans.csv', 'r') as csv file:

reader = csv.reader(csv file, delimiter=',', quotechar="'"")

for row 1in reader:
humans . append ({
'age': 1nt (rowl[O0]),
'name': row|[l],
'city': row[2]
})

" JONKOPING UNIVERSITY

XML: EXTENSIBLE MARKUP LANGUAGE

<humans>
<human>
<age>10</age>
<name>Alice</name>
<city>Atlanta</city>
</human>

<human>

<age>15</age>

</humans>

XML IN PYTHON

import xml.etree.ElementTree as ET

humans = [{'age': 10, 'name': "Alice", 'city'

{'age': 15, 'name': "Belle", 'city'

{'age': 20, 'nmame': "Chloe Clair",
humans element = ET.Element ('humans’')

for h 1n humans:

: "Atlanta"},
: "Buenos Aires"},

'city': "Cairo"}]

human element = ET.SubElement (humans element, 'human')

age element = ET.SubElement (human element,
age element.text = str(h['age'])
name element = ET.SubElement (human element,

name_element.text = h['name']

city element = ET.SubElement (human element,

city element.text = h['city']

'age')

'name')

'city')

<humans>
<human>
<age>
10
</age>
<name>
Alice
</name>
<city>
Atlanta
</city>

</human>

</humans>

School of Engineering

XML IN PYTHON

xml string = ET.tostring (humans element,
encoding="unicode")

<humans>

<human>

<age>
10

</age>

with open('humans.xml', 'w') as xml file:

xml file.write(xml string)

<name>
Alice
</name>
<city>
Atlanta
</city>

</human>

</humans>

‘ School of Engineering

XML IN PYTHON

import xml.etree.ElementTree as ET <human>

humans = [] <age>
10

</age>

<humans>

with open ('humans.xml', 'r') as xml file:

xml string = xml file.read()

. . < >
humans element = ET.fromstring(xml string) Hame

_ Alice
for human element 1n humans element:
- - </name>
humans . append ({ .
<city>

'age': int (human element.find("age") .text),
— Atlanta

'name': human element.find("name") .text,

</city>
'city': human element.find("city") .text

})

</human>

</humans>

School of Engineering

JSON: JAVASCRIPT OBJECT NOTATION

Numbers in JSON: 41 3.14

Strings in JSON: "Hello" "Hi"
Booleans in JSON: true false
Arrays in JSON: [12, "Hi", false]
Objects in JSON: {"a": 1, "b": true}

"name": "Alice", "city": "Atlanta"},

"name": "Belle", "city": "Buenos Aires"},

"name": "Chloe Clair", "city": "Chicago"}

JSON IN PYTHON

import json

humans = |
{'age': 10, ' ': "Alice", 'city': "Atlanta"},
{'age': 15, ' ': "Belle", 'city': "Buenos Aires"},
{'age': 20, ' ': "Chloe Clair", 'city': "Cairo"}

]

Jjson string = json.dumps (humans)

with open ('humans.json', 'w') as json file:

Jjson file.write (Json string)

" JONKOPING UNIVERSITY

JSON IN PYTHON

import json
humans = []

with open ('humans.json', 'r') as json file:

Jjson string = json file.read()

humans = json.loads (Jjson string)

MORE FILE OPERATIONS

import os

os.remove ("the-filename.txt")

os.rename ("current-filename.txt", "new—-filename.txt")

import os.path

exlists = os.path.isfile("the-filename.txt")

JONKOPING UNIVERSITY

