

FUNCTIONS IN PYTHON
Peter Larsson-Green

Jönköping University

Autumn 2018

COMPUTING MULTIPLE SUMS

sum = 0

for i in range(4):

sum = sum + i

sum2 = 0

for i in range(6):

sum2 = sum2 + i

Duplicated a lot of code 

• We can copy-paste code with errors.
• Need to fix the code at multiple places...

• We may come up with a better algorithm.
• Need to change the code at multiple places...

Functions to the rescue! ☺

• Statements in the function are executed when the function is called.
• The call expression:

• Can return a value.
• The return statement:

FUNCTIONS

A function = a value that contains code
(a sequence of statements).

• Is usually stored in a variable.

Syntax:

return <expr>

()

def variable():

Statement 1

Statement 2

Statement ...

<expr>

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1

nine = 6 + get_three()

four =

Program

+ 1

def get_three():

return

()get_three

nine = +6 ()get_three

+2 1

FUNCTION EXAMPLE

Let's be a computer and execute the statements!

def get_three():

return 2 + 1

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three(): # I create a function...

return 2 + 1 # ...consisting of this statement...

and store it in the variable get_three.

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1 #To compute the value I should store in four

#I need to call the function get_three.

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three(): # So I call this function,

return 2 + 1 # and start to execute the statements in it.

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1 # I return: 2+1 → 3.

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1 # I store get_three()+1 → 3+1 → 4 in four.

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1

nine = 6 + get_three()#To compute the value I should store in nine,

#I need to call the function get_three.

FUNCTION EXAMPLE

def get_three(): # So I call this function,

return 2 + 1 # and start to execute the statements in it.

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1 # I return: 2+1 → 3.

four = get_three() + 1

nine = 6 + get_three()

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1

nine = 6 + get_three() # I store 6+get_three() → 6+3 → 9 in nine.

FUNCTION EXAMPLE

def get_three():

return 2 + 1

four = get_three() + 1

nine = 6 + get_three()

And I'm done!

PRACTICAL EXAMPLE

def sum_of_ints():

sum = 0

for i in range(6):

sum = sum + i

return sum

fifteen = sum_of_ints()

GIVING FUNCTIONS INPUT

last_int = 0

def sum_of_ints():

sum = 0

for i in range(last_int):

sum = sum + i

return sum

last_int = 6

fifteen = sum_of_ints()

How can
we change
this 6 each

call?

def add(number_a, number_b):

return number_a + number_b

three = add(1, 2)

five = add(4, 1)

PARAMETERS AND ARGUMENTS

def variable(para1, para2, para...):

Statement 1

Statement 2

Statement ...

(, ,)<expr1> <expr2> <expr...><expr>

def sum_of_ints(last_int):

sum = 0

for i in range(last_int):

sum = sum + i

return sum

fifteen = sum_of_ints(6)

THE FINAL SOLUTION

Poorly named
variable (it is not

added to the
returned sum!).

PRACTICAL EXAMPLE

