

STRINGS IN PYTHON
Peter Larsson-Green

Jönköping University

Autumn 2018

STRINGS

Represents a sequence of characters.

• Expressions creating strings:

→ This is a string.

→ This is a string.

"This is a string."

'This is a string.'

"""This is a

string covering

multiple lines."""

→ This is a

string covering

multiple lines.

• The + operator can be used to concatenate strings:
→ This is a string!+"This is " 'a string!'

STRINGS

=="Winter" "Summer" → False

=="Winter" "winter"

<"Hello" "Hi"

→ False

→ True

*4 'ab' → "abababab"

in"b" 'abc' → True

in"bc" 'abc' → True

not in"cb" 'abc' → True

STRINGS ARE SEQUENCES

A string is a sequence of characters.

• Each character in the string has an index.

abc a b c=
0 1 2Index:

• Expression retrieving a character at specified index:

[]<str-expr> <index-expr>

"abc"[0]

"abc"[1]

"abc"[2]→ a

→ b

→ c

len("abc") → 3

-3 -2 -1

ITERATING OVER STRINGS

name = "Alice"

for i in range(len(name)):

print(str(i) +" "+ name[i])

A

l

i

c

e

name = "Alice"

for c in name:

print(c)

0 A

1 l

2 i

3 c

4 e

EXAMPLE

reverse("abc") → cba

reverse("12345") → 54321

def reverse(string):

reversed = ""

for c in string:

reversed = c + reversed

return reversed

def sum(numbers):

sum = 0

for n in numbers:

sum = sum + n

return sum

STRINGS ARE OBJECTS

• Objects have methods.

.method()<expr>

• Some string methods:

"abc abc".capitalize()

"abc abc".count("b")

"abc abc".islower()

→ Abc abc

→ 2

→ True

• Strings are immutable.

SOME MORE STRING METHODS

"AbC aBc".lower()

"abc abc".replace("c ", "xx")

"abc abc".startswith("ab")

"AbC aBc".swapcase()

"Abc abc".upper()

→ abc abc

→ abxxabc

→ True

→ aBc AbC

→ ABC ABC

help(str)

SLICING

Extracting a sub sequence of a sequence.

[:]<seq-expr> <expr>

[:]<seq-expr>

name = "Alice"

→ "Alice"name[:]

[:]<seq-expr> <expr>

→ "ice"name[2:]

→ "Al"name[:2]

Indexes: 01234

SLICING

Extracting a sub sequence of a sequence.

[:]<seq-expr> <expr> <expr>

name[1:3] → "li"

[: :]<seq-expr> <expr> <expr>

name[1:4:2] → "lc"

<expr>

name[::2] → "Aie"

name[2::2] → "ie"

name[-2::] → "ce"

name[3:1:-1] → "ci"

name[::-1] → "ecilA"

name = "Alice"

Indexes: 01234

