

REST API AUTHORIZATION
Peter Larsson-Green

Jönköping University

Autumn 2018

AUTHORIZATION

Client Server
POST /notes
Title: To Buy
Content: Milk & Bread

Store note in database

201 CREATED
Note id: 123

GET /notes/123 Hmm...
Is he authorized
to request that?

Id: 123
Title: To Buy
Content: Milk & Bread

AUTHENTICATION VS AUTHORIZATION

Identity

Is the user
really who he
claims to be?

What is the
user allowed

to do?

AUTHORIZATION WITHOUT AUTHENTICATION

Client Server
POST /notes
Title: To Buy
Content: Milk & Bread

Store note in database

201 CREATED
Note id: 23anh84n2m21

GET /notes/23anh84n2m21 He's authorized to
access the resource

Id: 23anh84n2m21
Title: To Buy
Content: Milk & Bread

IMPLEMENTING AUTHENTICATION

1. Users needs to be uniquely identified.
• Use account resources.

2. Users needs to be able to prove
ownership of an account.
• Each user shares a secret with the server,

e.g. a password.

Username

User A

User B

User C

User D

The accounts table
Password

Password A

Password B

Password C

Password D

Id

1

2

3

4

AUTHORIZATION WITH AUTHENTICATION

Client Server
POST /accounts
Username: Alice
Password: abc777

Store account in database

201 CREATED
Account id: 123

Id: 123
Username: Alice
Password: abc777

POST /notes
Title: To Buy
Content: Milk & Bread
Account id: 123
Username: Alice
Password: abc777

Store note in database

201 CREATED
Note id: 456

Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

AUTHORIZATION WITH AUTHENTICATION

Client Server

Store account in database

Id: 123
Username: Alice
Password: abc777

Store note in database
Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

GET /notes/456
Username: Alice
Password: abc777

200 OK
Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

AUTHORIZATION WITH TOKENS

Client Server

Store account in database

Id: 123
Username: Alice
Password: abc777

POST /tokens
Username: Alice
Password: abc777

201 CREATED
Token: hhhhhh

POST /notes
Title: To Buy
Content: Milk & Bread
Account id: 123
Token: hhhhhh Store note in database

201 CREATED
Note id: 456

Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

Store token in database

Token: hhhhhh
Account id: 123

AUTHORIZATION WITH TOKENS

Client Server

Store account in database

Id: 123
Username: Alice
Password: abc777

Store note in database
Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

GET /notes/456
Token: hhhhhh

200 OK
Id: 456
Title: To Buy
Content: Milk & Bread
Account id: 123

Store token in database

Token: hhhhhh
Account id: 123

AUTHORIZATION

• Correctly implementing authorization is important.

• Proving that no security vulnerabilities exists is hard.

Authorization frameworks:

• Proved to work good.

• Everybody do it the same way.

OAUTH 2.0 - WHAT IS IT?

A framework for an application with user resources that allows
other applications to access these resources.

Real-world example:

Google

SMS appPeter

Implements
OAuth 2.0.

Get Peter's
contacts

Create new contact
in Peter's calendar

OAUTH 2.0 - HOW DOES IT WORK?

1. The SMS app pre-register itself as an client at Google.

2. Peter starts using the SMS app.

3. The SMS app tells Peter it would like to access Peter's contact
list at Google.
• The SMS app redirects Peter to Google.

4. Peter tells Google that the SMS app may access his contact list.
• Peter receives a token with permission to access his contact list.

5. Google redirects Peter back to the SMS app.
• Peter gives the token to the SMS app.

6. The SMS app uses the token to prove to Google that it has
permission to access Peter's contact list.

OAUTH 2.0 - ROLES

Resource
Server

Authorization
Server

Client

Resource Owner

OAUTH 2.0 - ROLES

Google
Resource Server

Google
Authorization Server

SMS app
Client

Peter
Resource OwnerThe client needs to

register itself at the
server first. Retrieves:

• client_id

• client_secret

OAUTH 2.0 - BASIC FLOW

Google
Resource Server

Google
Authorization Server

SMS app
Client

1. Authorization Request

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

Peter
Resource Owner

OBTAINING THE TOKEN (1)

There are four ways:

• Implicit
(client="SPA or smartphone"). Peter

Resource Owner

Google
Resource Server

Google
Authorization Server

SMS app
Client

Grants
access.

Is using client.

Redirects user to
authorization server.

Redirects user to client
with access token.

Use access token for
authorization.

OBTAINING THE TOKEN (2)

There are four ways:

• Implicit.

• Authorization code
(client="web app").

Peter
Resource Owner

Google
Resource Server

Google
Authorization Server

SMS app
Client

Is using client.

Redirects user to
authorization server.

Grants
access.

Redirects user to client
with authorization code.

Trade authorization
code for access token.

Use access token for
authorization.

OBTAINING THE TOKEN (3)

There are four ways:

• Implicit.

• Authorization code.

• Resource Owner
Password Credentials
(for very trustful clients).

Peter
Resource Owner

Google
Resource Server

Google
Authorization Server

SMS app
Client

Give username &
password.

Use access token for
authorization.

Get token using
username & password.

OBTAINING THE TOKEN (4)

There are four ways:

• Implicit.

• Authorization code.

• Resource Owner
Password Credentials.

• Client credentials.

Peter
Resource Owner

Google
Resource Server

Google
Authorization Server

SMS app
Client

Use access token for
authorization.

Get token using client_id
and client_secret.

EXAMPLE

Accessing a user's calendar at Google.

1. Register your application as a client at Google API Console:
1. Login at: https://console.developers.google.com

2. Create a new project.

3. Activate the Google APIs you want to use (Google Calendar).

4. Obtain client_id and client_secret.

https://console.developers.google.com/

EXAMPLE

Accessing a user's calendar at Google.

1. Register your application as a client at Google API Console.

2. Ask a user for permission to access her Google calendar:
1. Redirect user to:

https://accounts.google.com/o/oauth2/v2/auth?

client_id=YOUR_CLIENT_ID&

redirect_uri=http://YOUR_SITE.COM/GOOGLE_RESPONSE&

response_type=code&

scope=https://www.googleapis.com/auth/calendar

2. User accepts and is redirected back to:
http://YOUR_SITE.COM/GOOGLE_RESPONSE?code=YOUR_CODE

EXAMPLE

Accessing a user's calendar at Google.

1. Register your application as a client at Google API Console.

2. Ask a user for permission to access her Google calendar.

3. On the server, exchange authorization code for access token:
1. Send a POST request to:

https://www.googleapis.com/oauth2/v4/token

with the following body:
code=YOUR_CODE&

client_id=YOUR_CLIENT_ID&

client_secret=YOUR_CLIENT_SECRET&

redirect_uri=http://YOUR_SITE.COM/GOOGLE_RESPONSE&

grant_type=authorization_code

2. Read access token from the body of the response.

EXAMPLE

Accessing a user's calendar at Google.

1. Register your application as a client at Google API Console.

2. Ask a user for permission to access her Google calendar.

3. On the server, exchange access code for access token.

4. Use access token to access the user's calendars:
1. Send GET request to:

https://www.googleapis.com/calendar/v3/users/me/calendarList

with the following header:
Authorization: Bearer YOUR_TOKEN

2. Read the user's calendars from the body of the response.

EXAMPLE

Useful resources for Google APIs:

• Obtaining token: https://developers.google.com/identity/protocols/OAuth2

• Specific for web apps: https://developers.google.com/identity/protocols/OAuth2WebServer

• Calendar API scopes: https://developers.google.com/google-apps/calendar/auth

• Calendar API docs: https://developers.google.com/google-apps/calendar/v3/reference/

Try it yourself:
• https://developers.google.com/oauthplayground/

https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2WebServer
https://developers.google.com/google-apps/calendar/auth
https://developers.google.com/google-apps/calendar/v3/reference/
https://developers.google.com/oauthplayground/

