

REST API BASICS
Peter Larsson-Green

Jönköping University

Autumn 2018

TRADITIONAL WEB APPLICATIONS

Client ServerGET /the-resource
...

200 OK

<html>Code...</html>
Displays the page,
then user clicks
on link.

GET /another-resource
...

200 OK

<html>Code...</html>
Displays the other
page, ...

TRADITIONAL WEB APPLICATIONS

The interface is built on HTML & HTTP.

• Drawbacks:
• The client must understand both HTTP and HTML.

• The entire webpage is replaced with another one.
• No way to animate transitions between webpages.

• Same data is usually sent in multiple responses.
• E.g. HTML code for the layout.

TRADITIONAL WEB APPLICATIONS

Client Server

HTTP &
HTML

Client

???

• HTTP & HTML can be used, but is not optimal.
• The GUI on smartphones does not use HTML.

• E.g. GET /users/3:

<h1>Claire</h1>

<p>Claire is 24 years old and lives in Boston.</p>

Name
Age City

APPLICATION PROGRAMMING INTERFACE

An API is an interface for Machine ↔Machine communication.

• An API making use of HTTP is called a Web API.

A GUI is an interface for Human ↔Machine communication.

Server
Client

API GUI

User

DIFFERENT TYPES OF WEB APIS

• Remote Procedure Call, RPC.
• Clients can call functions on the server.

• Remote Method Invocation, RMI.
• Clients can call methods on objects on the server.

• Representational State Transfer, REST.
• Clients can apply CRUD operations on resources on the server.

WHAT IS REST?

An architectural style for distributed hypermedia systems
described by Roy Thomas Fielding in his doctoral dissertation
2000.

• Consists of constraints:
1. Client - Server

2. Stateless

3. Cache

4. Uniform Interface

5. Layered System

6. Code-On-Demand Client Server Server

Relational

Database

Web

Application

Web

Browser
HTTP SQL

WHAT DOES REST MEAN?

The name "Representational State Transfer" is intended to evoke
an image of how a well-designed Web application behaves: a
network of web pages (a virtual state-machine), where the user
progresses through the application by selecting links (state
transitions), resulting in the next page (representing the next
state of the application) being transferred to the user and
rendered for their use.

From Roy's dissertation.

WHAT DOES REST MEAN?

Server

Id Name

1 Alice

2 Bob

3 Claire

UsersClient GET /users/2
...

{"id": 2, "name": "Bob"}
Changes state.

{"id": 2,

"name": "Obi"}

PUT /users/2
{"id": 2, "name": "Obi"}

USING HTTP AS THE UNIFORM INTERFACE

• Use URIs to identify resources.

• Use HTTP methods to specify operation:
• Create: POST (or PUT)

• Retrieve: GET

• Update: PUT (or PATCH)

• Delete: DELETE

• Use HTTP headers
Content-Type and Accept
to specify data format for the resources.

• Use HTTP status code to indicate success/failure.

Bad

POST /login

POST /create-book

GET /get-top-10-books

Good

POST /login-sessions

POST /books

GET /top-10-books

USING HTTP AS THE UNIFORM INTERFACE

REST is an architectural style, not a specification.

• In practice, it can be used in many different ways.
• But some are better than others.

Good recommendations:

• Web API Design - Crafting Interfaces that Developers Love
• https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf

https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf

REST EXAMPLE

A server with information about users.

• The GET method is used to retrieve resources.
• GET /users

• GET /users/2

• GET /users/pages/1

• GET /users/gender/female

• GET /users/age/18

• GET /users/???

• GET /users/2/name

• GET /users/2/pets

GET /users?page=1

GET /users?gender=female

GET /users?age=18

GET /users?gender=female&age=18

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• The GET method is used to retrieve resources.
• Which data format? Specified by the Accept header!

GET /users HTTP/1.1

Host: the-website.com

Accept: application/json

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 66

[

{"id": 1, "name": "Alice"},

{"id": 2, "name": "Bob"}

]

application/xml

was popular before
JSON.

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• The POST method is used to create resources.
• Which data format? Specified by the Accept and Content-Type header!

POST /users HTTP/1.1

Host: the-website.com

Accept: application/json

Content-Type: application/xml

Content-Length: 49

<user>

<name>Claire</name>

</user>

HTTP/1.1 201 Created

Location: /users/3

Content-Type: application/json

Content-Length: 28

{"id": 3, "name": "Claire"}

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• The PUT method is used to update an entire resource.

PUT /users/3 HTTP/1.1

Host: the-website.com

Content-Type: application/xml

Content-Length: 52

<user>

<id>3</id>

<name>Cecilia</name>

</user>

HTTP/1.1 204 No Content

PUT can also be used to
create a resource if you

know which URI it should
have in advance.

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• The DELETE method is used to delete a resource.

DELETE /users/2 HTTP/1.1

Host: the-website.com

HTTP/1.1 204 No Content

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• The PATCH method is used to update parts of a resource.

PATCH /users/1 HTTP/1.1

Host: the-website.com

Content-Type: application/xml

Content-Length: 37

<user>

<name>Amanda</human>

</user>

HTTP/1.1 204 No Content

The PATCH
method is only a

proposed standard.

Id Name

1 Alice

2 Bob

3 Claire

Users

REST EXAMPLE

A server with information about users.

• What if something goes wrong?
• Use the HTTP status codes to indicate success/failure.

GET /users/999 HTTP/1.1

Host: the-website.com

Accept: application/json

HTTP/1.1 404 Not Found

• Read more about the different status codes at:
• http://www.restapitutorial.com/httpstatuscodes.html

• Optionally include error messages in the response body.

Id Name

1 Alice

2 Bob

3 Claire

Users

http://www.restapitutorial.com/httpstatuscodes.html

DESIGNING A REST API

How should you think?

• Make it as easy as possible to use by other programmers.

Facebook:
• Always return 200 OK.

• GET /v2.7/{user-id}

• GET /v2.7/{post-id}

• GET /v2.7/{user-id}/friends

• GET /v2.7/{object-id}/likes

DESIGNING A REST API

How should you think?

• Make it as easy as possible to use by other programmers.

Twitter:
• Only use GET and POST.

• GET /1.1/users/show.json?user_id=2244994945

• POST /1.1/favorites/destroy.json?id=243138128959913986

