JONKOPING UNIVERSITY
School of Engineering

SCALING DATABASES

Peter Larsson-Green
Lecturer at Jonkoping University
Spring 2019

JONKOPING UNIVERSITY

HORIZONTAL SCALING WITH A LOAD BALANCER

Application
: Load Application Server A
Client Balancer DB
Load Balancer Server Application
DB Server
Application Server B

Relational databases are hard to scale because they support ACID transactions.

' JONKOPING UNIVERSITY
‘ ol of Engine

name |[amount

DANGEROUS EXAMPLE

Transter $20 from Alice's account to Bob's account.
» First reduce Alice's amount by $20:

* UPDATE accounts SET amount = amount - 20 WHERE name = "Alice"
* Then increase Bob's amount by $20:

 UPDATE accounts SET amount = amount + 20 WHERE name = "Bob"
What's the problem?

« What if the second query is never executed (e.g. DB has crashed)?
« $20 lost, leaving the database in an invalid state.

' JONKOPING UNIVERSITY
‘ ol of Engine

name |[amount

GOOD EXAMPLE

Transter $20 from Alice's account to Bob's account.

» Use an SQL transaction to group queries together:
BEGIN TRANSACTION

UPDATE accounts SET amount = amount - 20 WHERE name = "Alice"
UPDATE accounts SET amount = amount + 20 WHERE name = "Bob"
COMMIT

« The DB will execute all queries, or none.

' JONKOPING UNIVERSITY
‘ ol of Engine

name |[amount

DANGEROUS EXAMPLE

Require all names to be unique.

app.post ("/accounts", function (req, res) {
const name = reqg.body.name
const query = "SELECT name FROM accounts WHERE name = 7"
db.get (query, [name], function (error, account) {
if (account == undefined) {
const query = "INSERT INTO accounts (name, amount) VALUES (2, 0)"

db.run (query, [name])

Another client might have crated
an account with the same name
before this query is executed!

JONKOPING UNIVERSITY
‘ School of Engineering

name |[amount

GOOD EXAMPLE

Require all names to be unique.
* Use a UNIQUE constraint on the name column.

CREATE TABLE accounts (
name TEXT,
amount INTEGER,

CONSTRAINT name must be unique UNIQUE (name)

' JONKOPING UNIVERSITY
‘ ol of Engine

name |[amount

GOOD EXAMPLE

Require all names to be unique.
* Use a UNIQUE constraint on the name column.

app.post ("/accounts", function (req, res) {
const name = reg.body.name
const query = "INSERT INTO accounts (name, amount) VALUES (2, 0)"
db.run (query, [name], function (error) {

if (error && error.message == "SQLITE CONSTRAINT: UNIQUE constraint failed: accounts.name") {

/* name already taken... */ }

JONKOPING UNIVERSITY
‘ School of Engineering

RELATIONAL DB: ADVANTAGE

Relational databases support ACID operations:

 Atomicity:
* Operations are fully completed, or fully aborted
(a sequence of queries can be grouped into a transaction).

 Consistency:
 All constraints, cascades (and similar) should be honored.

e Isolation:

 If multiple transactions are executed simultaneously,
the should be executed independently of each other.

 Durability:

 Errors (including power failures) should not leave the database in a bad state.

' JONKOPING UNIVERSITY
‘ ol of Engine

RELATIONAL DB: DISADVANTAGE

Primarily one downside with relational databases:

e Hard to scale!
e Contains a lot of data.
* Need to process many queries.

JONKOPING UNIVERSITY

RELATIONAL DB: SCALING APPROACH

Example 1: Use replicas [P pe—
 Can read from anyone Alice 100

e Need to write to all

Bob 100

Server
Special case: write master with read slaves. T amount
 Data we read might not be up-to-date Alice 100

Bob 100

EEEEEE

RELATIONAL DB: SCALING APPROACH

Example 2: Distribute the data

« Hard to scale when you need to use Alice 100
multiple DB at the same time

Server

name | amount

name | amount

Bob 100

EEEEEE

RELATIONAL DB: SCALING APPROACH

No matter how you do it, it is hard to support ACID operations in
a decentralized database.

e The CAP-theorem...

JONKOPING UNIVERSITY

THE NOSQL APPROACH

» Support scaling
* Drop ACID operations

JONKOPING UNIVERSITY

NOSQL: KEY-VALUE DATABASES

For example Redis.
» Supported operations:

e Create: SET ("The key", "The value")

* Retrieve: GET("The key") = "The value"
Update: SET ("The key", "The value")

 Delete: DEL ("The key")

JONKOPING UNIVERSITY

NOSQL: KEY-VALUE DATABASES

Good use-case: sharing sessions across multiple servers.

Application
Internet Load Application Server A Redis
Balancer
Load Balancer Server Application
Session Server
Application Server B

NOSQL: DOCUMENT DATABASE

For example MongoDB.

* A unit of data is called a document.
e Kind of like a row in a table in a relational database.

e A collection of documents is called a collection.
e Kind of like a table in a relational database.

 Documents can be nested.

JONKOPING UNIVERSITY

NOSQL: DOCUMENT DATABASE [rame [amount

Example: Storing accounts.

const db = connectToDatabase ()
const accounts = db.collection ("accounts")

accounts.insert ({name: "Alice", amount: 100})

accounts.insert ({name: "Bob", amount: 100})

JONKOPING UNIVERSITY
‘ School of Engineering

NOSQL: DOCUMENT DATABAS mwrrams

Example: Storing humans and pets.

const humans = db.collection ("humans")

id | hid name

humans.insert ({

name: "Alice",

age: 10,

pets: [{name: "Catty"}]
) Fast to fetch a human

humans.insert ({ with its petS

name: "Bob", No easy way to fetch a
age: 20, specific pet
pets: [{name: "Doggy"}]

}) " JONKﬁ:_PgING UNIVERSITY

NOSQL: DOCUMENT DATABAS mwrrams

Example: Storing humans and pets.

const humans = db.collection ("humans")

id | hid name

humans.insert ({id: 1, name: "Alice", age: 10})

humans.insert ({id: 2, name: "Bob", age: 20})

const pets = db.collection("pets")

pets.insert ({1d: 1, hId: 1, name: "Catty"})

pets.insert ({1d: 2, hId: 2, name: "Doggy"})

Like a relational database, but without ACID
operations

" JONKOPING UNIVERSITY

School of Engineering

Example: Storing humans and pets.
const humans = db.collection ("humans")
humans.insert ({

name: "Alice",

age: 10,

= .coll ' e "
pets: [{name: "Catty"}] const pets db.collection ("pets")
pets.insert ({

b | name: "Catty",
humans.insert ({ human: {name: "Alice", age: 10}

name: "Bob", })

age: 20, pets.insert ({
pets: [{name: "Doggy"}] name: "Doggy",
human: {name: "Bob", age: 20}

i UNIVERSITY

}) }) ing

NOSQL LIMITS name: "Jonkoping”,

population: 860000,

age: 350
Firestore:

» You can only perform range comparisons (<, <=, >, >=) on a single field, and you can
include at most one array_ contains clause in a compound query.

cities.where ("population", ">=", 1000) .where("age", ">", 100)

» The comparison can be <, <=, ==, >, >=, or array_ contains.

cities.where ("population", "!=", 1000)

JONKOPING UNIVERSITY
‘ School of Engineering

RELATIONAL DB VS NOSQL

Many big websites still use relational databases.
 Stack Overflow uses Microsoft SQL Server.

Most websites will work just fine with a relational database.

« Use a NoSQL database only if you have to or if don't have
relational data.

USE-CASES FOR NOSQL

Examples:
» Google indexing web pages.
« Smartphone apps collecting data.

JONKOPING UNIVERSITY

