

SCALING DATABASES
Peter Larsson-Green
Lecturer at Jönköping University
Spring 2019

HORIZONTAL SCALING WITH A LOAD BALANCER

Application Server A DB

Application

DB Server
Application Server B

ApplicationLoad Balancer Server

Load
BalancerClient

Relational databases are hard to scale because they support ACID transactions.

DANGEROUS EXAMPLE

Transfer $20 from Alice's account to Bob's account.
• First reduce Alice's amount by $20:

• UPDATE accounts SET amount = amount - 20 WHERE name = "Alice"

• Then increase Bob's amount by $20:
• UPDATE accounts SET amount = amount + 20 WHERE name = "Bob"

name amount
Alice 100
Bob 100

What's the problem?
• What if the second query is never executed (e.g. DB has crashed)?

• $20 lost, leaving the database in an invalid state.

accounts

GOOD EXAMPLE

Transfer $20 from Alice's account to Bob's account.
• Use an SQL transaction to group queries together:

BEGIN TRANSACTION
UPDATE accounts SET amount = amount - 20 WHERE name = "Alice"
UPDATE accounts SET amount = amount + 20 WHERE name = "Bob"
COMMIT

• The DB will execute all queries, or none.

name amount
Alice 100
Bob 100

accounts

DANGEROUS EXAMPLE
name amount

Alice 100
Bob 100

accounts

app.post("/accounts", function(req, res){

const name = req.body.name

const query = "SELECT name FROM accounts WHERE name = ?"

db.get(query, [name], function(error, account){

if(account == undefined){

const query = "INSERT INTO accounts (name, amount) VALUES (?, 0)"

db.run(query, [name])

}

})

})

Require all names to be unique.

Another client might have crated
an account with the same name

before this query is executed!

GOOD EXAMPLE
name amount

Alice 100
Bob 100

accountsRequire all names to be unique.
• Use a UNIQUE constraint on the name column.

CREATE TABLE accounts(

name TEXT,

amount INTEGER,

CONSTRAINT name_must_be_unique UNIQUE (name)
)

GOOD EXAMPLE
name amount

Alice 100
Bob 100

accountsRequire all names to be unique.
• Use a UNIQUE constraint on the name column.

app.post("/accounts", function(req, res){

const name = req.body.name

const query = "INSERT INTO accounts (name, amount) VALUES (?, 0)"

db.run(query, [name], function(error){

if(error && error.message == "SQLITE_CONSTRAINT: UNIQUE constraint failed: accounts.name"){

/* name already taken... */ }
}

})
})

RELATIONAL DB: ADVANTAGE
Relational databases support ACID operations:
• Atomicity:

• Operations are fully completed, or fully aborted
(a sequence of queries can be grouped into a transaction).

• Consistency:
• All constraints, cascades (and similar) should be honored.

• Isolation:
• If multiple transactions are executed simultaneously,

the should be executed independently of each other.
• Durability:

• Errors (including power failures) should not leave the database in a bad state.

RELATIONAL DB: DISADVANTAGE

Primarily one downside with relational databases:
• Hard to scale!

• Contains a lot of data.
• Need to process many queries.

RELATIONAL DB: SCALING APPROACH

Server

Example 1: Use replicas
• Can read from anyone J
• Need to write to all L

Special case: write master with read slaves.
• Data we read might not be up-to-date L

name amount
Alice 100
Bob 100

accounts

name amount
Alice 100
Bob 100

accounts

Write
s

WritesReads

RELATIONAL DB: SCALING APPROACH

Server

Example 2: Distribute the data
• Hard to scale when you need to use

multiple DB at the same time L

name amount
Alice 100

accounts

name amount
Bob 100

accounts

RELATIONAL DB: SCALING APPROACH

No matter how you do it, it is hard to support ACID operations in
a decentralized database.
• The CAP-theorem...

THE NOSQL APPROACH

• Support scaling J
• Drop ACID operations L

NOSQL: KEY-VALUE DATABASES

For example Redis.
• Supported operations:

• Create: SET("The key", "The value")
• Retrieve: GET("The key") à "The value"
• Update: SET("The key", "The value")
• Delete: DEL("The key")

NOSQL: KEY-VALUE DATABASES

Good use-case: sharing sessions across multiple servers.

Application Server A Redis

Application

Internet

Session Server
Application Server B

ApplicationLoad Balancer Server

Load
Balancer

NOSQL: DOCUMENT DATABASE

For example MongoDB.
• A unit of data is called a document.

• Kind of like a row in a table in a relational database.
• A collection of documents is called a collection.

• Kind of like a table in a relational database.
• Documents can be nested.

const db = connectToDatabase()
const accounts = db.collection("accounts")

accounts.insert({name: "Alice", amount: 100})

accounts.insert({name: "Bob", amount: 100})

NOSQL: DOCUMENT DATABASE

Example: Storing accounts.

name amount
Alice 100
Bob 100

accounts

const humans = db.collection("humans")
humans.insert({

name: "Alice",

age: 10,
pets: [{name: "Catty"}]

})
humans.insert({

name: "Bob",

age: 20,
pets: [{name: "Doggy"}]

})

NOSQL: DOCUMENT DATABASE

Example: Storing humans and pets.

id name age
1 Alice 10
2 Bob 20

humans

id hId name
1 1 Catty
2 2 Doggy

pets

Fast to fetch a human
with its pets J
No easy way to fetch a
specific pet L

const humans = db.collection("humans")
humans.insert({id: 1, name: "Alice", age: 10})

humans.insert({id: 2, name: "Bob", age: 20})

const pets = db.collection("pets")
pets.insert({id: 1, hId: 1, name: "Catty"})

pets.insert({id: 2, hId: 2, name: "Doggy"})

NOSQL: DOCUMENT DATABASE

Example: Storing humans and pets.

id name age
1 Alice 10
2 Bob 20

humans

id hId name
1 1 Catty
2 2 Doggy

pets

Like a relational database, but without ACID
operations L

const humans = db.collection("humans")
humans.insert({

name: "Alice",

age: 10,
pets: [{name: "Catty"}]

})
humans.insert({

name: "Bob",

age: 20,
pets: [{name: "Doggy"}]

})

NOSQL: DOCUMENT DATABASE

Example: Storing humans and pets.

id name age
1 Alice 10
2 Bob 20

humans

id hId name
1 1 Catty
2 2 Doggy

pets

const pets = db.collection("pets")
pets.insert({
name: "Catty",
human: {name: "Alice", age: 10}

})

pets.insert({
name: "Doggy",
human: {name: "Bob", age: 20}

})

NOSQL LIMITS

Firestore:
• You can only perform range comparisons (<, <=, >, >=) on a single field, and you can

include at most one array_contains clause in a compound query.

{
name: "Jönköping",

population: 860000,

age: 350
}

cities.where("population", ">=", 1000).where("age", ">", 100)

• The comparison can be <, <=, ==, >, >=, or array_contains.

cities.where("population", "!=", 1000)

RELATIONAL DB VS NOSQL

Many big websites still use relational databases.
• Stack Overflow uses Microsoft SQL Server.

Most websites will work just fine with a relational database.
• Use a NoSQL database only if you have to or if don't have

relational data.

USE-CASES FOR NOSQL

Examples:
• Google indexing web pages.
• Smartphone apps collecting data.

